If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-40y-100=0
a = 1; b = -40; c = -100;
Δ = b2-4ac
Δ = -402-4·1·(-100)
Δ = 2000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2000}=\sqrt{400*5}=\sqrt{400}*\sqrt{5}=20\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20\sqrt{5}}{2*1}=\frac{40-20\sqrt{5}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20\sqrt{5}}{2*1}=\frac{40+20\sqrt{5}}{2} $
| 1/2x+2/4x=13 | | -3b+2b=24-9b | | 9/3=3/x | | X=7/9x+4 | | (82/5)g=12 | | -3b-2b=24-9b | | 2(3n-2)+20=40 | | -3b+2b=24 | | 4/2=x/1 | | -0,52=(x-40)/10 | | 4(a-1)=0.5(8a-8 | | 7x-3(x-6)=2(x-4)+6 | | -18x+-1=15x+-13 | | -88+z=-88 | | 18x+-1=15x+-13 | | 11x+11=-7x | | 7(v-9)=-4v+14 | | 0,01=(x-240)/80 | | -8.94=5.25s-2.01 | | 1/3xx9=16 | | -1,28=(x-240)/80 | | 5/11=25/x | | 6(v-2)-8v=4 | | x/0.2=30 | | n−2.2=3.1 | | 1/2f+9/4=7/4 | | 0.01^x=100 | | 3h-22=2 | | 38=-4(4+x)-6 | | 35(x+16)=2135 | | x/0.15=4.5 | | 35(x+16)=1960 |